Python: Conditional Average Treatment Effects (CATEs) for IRM models#

In this simple example, we illustrate how the DoubleML package can be used to estimate conditional average treatment effects with B-splines for one or two-dimensional effects in the DoubleMLIRM model.

[1]:
import numpy as np
import pandas as pd
import doubleml as dml

from doubleml.datasets import make_heterogeneous_data

Data#

We define a data generating process to create synthetic data to compare the estimates to the true effect. The data generating process is based on the Monte Carlo simulation from Oprescu et al. (2019).

The documentation of the data generating process can be found here.

One-dimensional Example#

We start with an one-dimensional effect and create our training data. In this example the true effect depends only the first covariate \(X_0\) and takes the following form

\[\theta_0(X) = \exp(2X_0) + 3\sin(4X_0).\]

The generated dictionary also contains a callable with key treatment_effect to calculate the true treatment effect for new observations.

[2]:
np.random.seed(42)
data_dict = make_heterogeneous_data(
    n_obs=2000,
    p=10,
    support_size=5,
    n_x=1,
    binary_treatment=True,
)
treatment_effect = data_dict['treatment_effect']
data = data_dict['data']
print(data.head())
          y    d       X_0       X_1       X_2       X_3       X_4       X_5  \
0  4.803300  1.0  0.259828  0.886086  0.895690  0.297287  0.229994  0.411304
1  5.655547  1.0  0.824350  0.396992  0.156317  0.737951  0.360475  0.671271
2  1.878402  0.0  0.988421  0.977280  0.793818  0.659423  0.577807  0.866102
3  6.941440  1.0  0.427486  0.330285  0.564232  0.850575  0.201528  0.934433
4  1.703049  1.0  0.016200  0.818380  0.040139  0.889913  0.991963  0.294067

        X_6       X_7       X_8       X_9
0  0.240532  0.672384  0.826065  0.673092
1  0.270644  0.081230  0.992582  0.156202
2  0.289440  0.467681  0.619390  0.411190
3  0.689088  0.823273  0.556191  0.779517
4  0.210319  0.765363  0.253026  0.865562

First, define the DoubleMLData object.

[3]:
data_dml_base = dml.DoubleMLData(
    data,
    y_col='y',
    d_cols='d'
)

Next, define the learners for the nuisance functions and fit the IRM Model. Remark that linear learners would usually be optimal due to the data generating process.

[4]:
# First stage estimation
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
randomForest_reg = RandomForestRegressor(n_estimators=500)
randomForest_class = RandomForestClassifier(n_estimators=500)

np.random.seed(42)

dml_irm = dml.DoubleMLIRM(data_dml_base,
                          ml_g=randomForest_reg,
                          ml_m=randomForest_class,
                          trimming_threshold=0.05,
                          n_folds=5)
print("Training IRM Model")
dml_irm.fit()

print(dml_irm.summary)
Training IRM Model
       coef  std err           t  P>|t|     2.5 %    97.5 %
d  4.475569   0.0408  109.695045    0.0  4.395603  4.555536

To estimate the CATE, we rely on the best-linear-predictor of the linear score as in Semenova et al. (2021) To approximate the target function \(\theta_0(x)\) with a linear form, we have to define a data frame of basis functions. Here, we rely on patsy to construct a suitable basis of B-splines.

[5]:
import patsy
design_matrix = patsy.dmatrix("bs(x, df=5, degree=2)", {"x": data["X_0"]})
spline_basis = pd.DataFrame(design_matrix)

To estimate the parameters to calculate the CATE estimate call the cate() method and supply the dataframe of basis elements.

[6]:
cate = dml_irm.cate(spline_basis)
print(cate)
================== DoubleMLBLP Object ==================

------------------ Fit summary ------------------
       coef   std err          t          P>|t|    [0.025    0.975]
0  0.691423  0.143534   4.817119   1.456458e-06  0.410100  0.972745
1  2.303007  0.247977   9.287196   1.584057e-20  1.816982  2.789032
2  4.904315  0.161269  30.410682  3.968258e-203  4.588233  5.220398
3  4.755688  0.194092  24.502205  1.399343e-132  4.375274  5.136102
4  3.745881  0.195781  19.132982   1.341755e-81  3.362157  4.129606
5  4.314341  0.200049  21.566388  3.716013e-103  3.922251  4.706430

To obtain the confidence intervals for the CATE, we have to call the confint() method and a supply a dataframe of basis elements. This could be the same basis as for fitting the CATE model or a new basis to e.g. evaluate the CATE model on a grid. Here, we will evaluate the CATE on a grid from 0.1 to 0.9 to plot the final results. Further, we construct uniform confidence intervals by setting the option joint and providing a number of bootstrap repetitions n_rep_boot.

[7]:
new_data = {"x": np.linspace(0.1, 0.9, 100)}
spline_grid = pd.DataFrame(patsy.build_design_matrices([design_matrix.design_info], new_data)[0])
df_cate = cate.confint(spline_grid, level=0.95, joint=True, n_rep_boot=2000)
print(df_cate)
       2.5 %    effect    97.5 %
0   2.070552  2.333655  2.596758
1   2.185984  2.453279  2.720573
2   2.298076  2.570936  2.843796
3   2.407558  2.686627  2.965696
4   2.515031  2.800351  3.085671
..       ...       ...       ...
95  4.417640  4.704814  4.991988
96  4.424292  4.705354  4.986417
97  4.433750  4.708235  4.982720
98  4.445476  4.713457  4.981438
99  4.458784  4.721018  4.983253

[100 rows x 3 columns]

Finally, we can plot our results and compare them with the true effect.

[8]:
from matplotlib import pyplot as plt
plt.rcParams['figure.figsize'] = 10., 7.5

df_cate['x'] = new_data['x']
df_cate['true_effect'] = treatment_effect(new_data["x"].reshape(-1, 1))
fig, ax = plt.subplots()
ax.plot(df_cate['x'],df_cate['effect'], label='Estimated Effect')
ax.plot(df_cate['x'],df_cate['true_effect'], color="green", label='True Effect')
ax.fill_between(df_cate['x'], df_cate['2.5 %'], df_cate['97.5 %'], color='b', alpha=.3, label='Confidence Interval')

plt.legend()
plt.title('CATE')
plt.xlabel('x')
_ =  plt.ylabel('Effect and 95%-CI')
../_images/examples_py_double_ml_cate_17_0.png

If the effect is not one-dimensional, the estimate still corresponds to the projection of the true effect on the basis functions.

Two-Dimensional Example#

It is also possible to estimate multi-dimensional conditional effects. We will use a similar data generating process but now the effect depends on the first two covariates \(X_0\) and \(X_1\) and takes the following form

\[\theta_0(X) = \exp(2X_0) + 3\sin(4X_1).\]

With the argument n_x=2 we can specify set the effect to be two-dimensional.

[9]:
np.random.seed(42)
data_dict = make_heterogeneous_data(
    n_obs=5000,
    p=10,
    support_size=5,
    n_x=2,
    binary_treatment=True,
)
treatment_effect = data_dict['treatment_effect']
data = data_dict['data']
print(data.head())
          y    d       X_0       X_1       X_2       X_3       X_4       X_5  \
0  1.286203  1.0  0.014080  0.006958  0.240127  0.100807  0.260211  0.177043
1  0.416899  1.0  0.152148  0.912230  0.892796  0.653901  0.672234  0.005339
2  2.087634  1.0  0.344787  0.893649  0.291517  0.562712  0.099731  0.921956
3  7.508433  1.0  0.619351  0.232134  0.000943  0.757151  0.985207  0.809913
4  0.567695  0.0  0.477130  0.447624  0.775191  0.526769  0.316717  0.258158

        X_6       X_7       X_8       X_9
0  0.028520  0.909304  0.008223  0.736082
1  0.984872  0.877833  0.895106  0.659245
2  0.140770  0.224897  0.558134  0.764093
3  0.460207  0.903767  0.409848  0.524934
4  0.037747  0.583195  0.229961  0.148134

As univariate example estimate the IRM Model.

[10]:
data_dml_base = dml.DoubleMLData(
    data,
    y_col='y',
    d_cols='d'
)
[11]:
# First stage estimation
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
randomForest_reg = RandomForestRegressor(n_estimators=500)
randomForest_class = RandomForestClassifier(n_estimators=500)

np.random.seed(42)

dml_irm = dml.DoubleMLIRM(data_dml_base,
                          ml_g=randomForest_reg,
                          ml_m=randomForest_class,
                          trimming_threshold=0.05,
                          n_folds=5)
print("Training IRM Model")
dml_irm.fit()

print(dml_irm.summary)
Training IRM Model
       coef   std err           t  P>|t|     2.5 %    97.5 %
d  4.547039  0.038845  117.056745    0.0  4.470904  4.623173

As above, we will rely on the patsy package to construct the basis elements. In the two-dimensional case, we will construct a tensor product of B-splines (for more information see here).

[12]:
design_matrix = patsy.dmatrix("te(bs(x_0, df=7, degree=3), bs(x_1, df=7, degree=3))", {"x_0": data["X_0"], "x_1": data["X_1"]})
spline_basis = pd.DataFrame(design_matrix)

cate = dml_irm.cate(spline_basis)
print(cate)
================== DoubleMLBLP Object ==================

------------------ Fit summary ------------------
         coef   std err          t         P>|t|    [0.025     0.975]
0    2.805774  0.142119  19.742411  9.322186e-87  2.527226   3.084323
1   -1.115972  0.830442  -1.343828  1.790039e-01 -2.743609   0.511665
2    0.462979  0.786237   0.588854  5.559592e-01 -1.078017   2.003975
3    2.308774  0.725061   3.184247  1.451312e-03  0.887680   3.729867
4    0.575810  0.739063   0.779108  4.359161e-01 -0.872727   2.024346
5   -3.338603  1.003944  -3.325486  8.826467e-04 -5.306297  -1.370908
6   -4.994377  1.104849  -4.520415  6.171848e-06 -7.159841  -2.828912
7   -6.404411  0.950158  -6.740367  1.579875e-11 -8.266686  -4.542136
8   -2.644985  0.809125  -3.268943  1.079500e-03 -4.230842  -1.059128
9    3.753393  0.855035   4.389755  1.134784e-05  2.077555   5.429230
10  -0.018508  0.725919  -0.025496  9.796596e-01 -1.441282   1.404267
11   1.577813  0.797086   1.979475  4.776254e-02  0.015552   3.140073
12  -1.070751  1.092935  -0.979702  3.272332e-01 -3.212863   1.071362
13  -2.291008  1.193253  -1.919969  5.486178e-02 -4.629740   0.047724
14  -2.607264  0.939458  -2.775285  5.515338e-03 -4.448569  -0.765960
15   0.241678  0.732137   0.330100  7.413247e-01 -1.193285   1.676641
16   1.085395  0.730809   1.485197  1.374917e-01 -0.346964   2.517753
17   3.742375  0.648355   5.772104  7.828778e-09  2.471622   5.013128
18   1.384928  0.677123   2.045313  4.082400e-02  0.057792   2.712064
19  -1.506050  0.912903  -1.649738  9.899662e-02 -3.295307   0.283207
20  -2.315310  1.013712  -2.283992  2.237200e-02 -4.302149  -0.328471
21  -2.806554  0.753323  -3.725565  1.948785e-04 -4.283041  -1.330068
22   1.945881  0.723657   2.688956  7.167581e-03  0.527540   3.364221
23   2.189248  0.754469   2.901705  3.711383e-03  0.710515   3.667981
24   4.374862  0.672511   6.505264  7.755701e-11  3.056764   5.692959
25   2.134542  0.649514   3.286371  1.014873e-03  0.861519   3.407565
26   1.709596  0.904396   1.890318  5.871545e-02 -0.062988   3.482179
27  -1.233029  0.981715  -1.255995  2.091179e-01 -3.157154   0.691097
28  -1.378588  0.847962  -1.625767  1.039991e-01 -3.040562   0.283386
29   4.060417  0.953704   4.257523  2.067046e-05  2.191192   5.929643
30   4.063700  0.885956   4.586794  4.501047e-06  2.327257   5.800143
31   6.076596  0.810322   7.498992  6.431061e-14  4.488394   7.664797
32   3.840673  0.778400   4.934058  8.053849e-07  2.315036   5.366310
33   2.584928  1.058595   2.441849  1.461227e-02  0.510121   4.659735
34  -1.847555  1.300031  -1.421163  1.552694e-01 -4.395569   0.700458
35  -0.429705  1.107413  -0.388026  6.979971e-01 -2.600195   1.740785
36   7.039036  1.009255   6.974487  3.069882e-12  5.060933   9.017140
37   5.187664  0.990903   5.235291  1.647254e-07  3.245531   7.129798
38   7.151063  0.831278   8.602492  7.800326e-18  5.521788   8.780338
39   6.733644  0.916930   7.343685  2.077923e-13  4.936494   8.530793
40   2.381603  1.177740   2.022181  4.315769e-02  0.073275   4.689932
41   4.440747  1.294449   3.430608  6.022295e-04  1.903674   6.977820
42   1.732067  1.095654   1.580853  1.139117e-01 -0.415375   3.879509
43  10.068514  1.002277  10.045638  9.602386e-24  8.104087  12.032941
44   3.734635  1.100715   3.392917  6.915260e-04  1.577273   5.891997
45   9.197920  0.697693  13.183339  1.094378e-39  7.830467  10.565373
46   5.367181  0.695928   7.712268  1.236015e-14  4.003187   6.731174
47   5.925660  0.816373   7.258522  3.913415e-13  4.325599   7.525722
48   1.301737  0.988541   1.316826  1.878968e-01 -0.635768   3.239243
49   1.237341  0.897451   1.378727  1.679789e-01 -0.521632   2.996313

Finally, we create a new grid to evaluate and plot the effects.

[13]:
grid_size = 100
x_0 = np.linspace(0.1, 0.9, grid_size)
x_1 = np.linspace(0.1, 0.9, grid_size)
x_0, x_1 = np.meshgrid(x_0, x_1)

new_data = {"x_0": x_0.ravel(), "x_1": x_1.ravel()}
[14]:
spline_grid = pd.DataFrame(patsy.build_design_matrices([design_matrix.design_info], new_data)[0])
df_cate = cate.confint(spline_grid, joint=True, n_rep_boot=2000)
print(df_cate)
         2.5 %    effect    97.5 %
0     1.671690  2.379626  3.087561
1     1.681521  2.366950  3.052380
2     1.698509  2.357170  3.015831
3     1.720559  2.350208  2.979857
4     1.745444  2.345989  2.946533
...        ...       ...       ...
9995  3.716387  4.506644  5.296901
9996  3.831741  4.661388  5.491034
9997  3.939250  4.811696  5.684142
9998  4.041925  4.955701  5.869477
9999  4.142382  5.091535  6.040688

[10000 rows x 3 columns]
[15]:
import plotly.graph_objects as go

grid_array = np.array(list(zip(x_0.ravel(), x_1.ravel())))
true_effect = treatment_effect(grid_array).reshape(x_0.shape)
effect = np.asarray(df_cate['effect']).reshape(x_0.shape)
lower_bound = np.asarray(df_cate['2.5 %']).reshape(x_0.shape)
upper_bound = np.asarray(df_cate['97.5 %']).reshape(x_0.shape)

fig = go.Figure(data=[
    go.Surface(x=x_0,
               y=x_1,
               z=true_effect),
    go.Surface(x=x_0,
               y=x_1,
               z=upper_bound, showscale=False, opacity=0.4,colorscale='purp'),
    go.Surface(x=x_0,
               y=x_1,
               z=lower_bound, showscale=False, opacity=0.4,colorscale='purp'),
])
fig.update_traces(contours_z=dict(show=True, usecolormap=True,
                                  highlightcolor="limegreen", project_z=True))

fig.update_layout(scene = dict(
                    xaxis_title='X_0',
                    yaxis_title='X_1',
                    zaxis_title='Effect'),
                    width=700,
                    margin=dict(r=20, b=10, l=10, t=10))

fig.show()