Python: Panel Data Introduction#

In this example, we replicate the results from the guide Getting Started with the did Package of the did-R-package.

As the did-R-package the implementation of DoubleML is based on Callaway and Sant’Anna(2021).

The notebook requires the following packages:

[1]:
import pandas as pd
import numpy as np

from sklearn.linear_model import LinearRegression, LogisticRegression

from doubleml.data import DoubleMLPanelData
from doubleml.did import DoubleMLDIDMulti

Data#

The data we will use is simulated and part of the CSDID-Python-Package.

A description of the data generating process can be found at the CSDID-documentation.

[2]:
dta = pd.read_csv("https://raw.githubusercontent.com/d2cml-ai/csdid/main/data/sim_data.csv")
dta.head()
[2]:
G X id cluster period Y treat
0 3 -0.876233 1 5 1 5.562556 1
1 3 -0.876233 1 5 2 4.349213 1
2 3 -0.876233 1 5 3 7.134037 1
3 3 -0.876233 1 5 4 6.243056 1
4 2 -0.873848 2 36 1 -3.659387 1

To work with the DoubleML-package, we initialize a DoubleMLPanelData object.

Therefore, we set the never-treated units in group column G to np.inf (we have to change the datatype to float).

[3]:
# set dtype for G to float
dta["G"] = dta["G"].astype(float)
dta.loc[dta["G"] == 0, "G"] = np.inf
dta.head()
[3]:
G X id cluster period Y treat
0 3.0 -0.876233 1 5 1 5.562556 1
1 3.0 -0.876233 1 5 2 4.349213 1
2 3.0 -0.876233 1 5 3 7.134037 1
3 3.0 -0.876233 1 5 4 6.243056 1
4 2.0 -0.873848 2 36 1 -3.659387 1

Now, we can initialize the DoubleMLPanelData object, specifying

  • y_col : the outcome

  • d_cols: the group variable indicating the first treated period for each unit

  • id_col: the unique identification column for each unit

  • t_col : the time column

  • x_cols: the additional pre-treatment controls

[4]:
dml_data = DoubleMLPanelData(
    data=dta,
    y_col="Y",
    d_cols="G",
    id_col="id",
    t_col="period",
    x_cols=["X"]
)
print(dml_data)
================== DoubleMLPanelData Object ==================

------------------ Data summary      ------------------
Outcome variable: Y
Treatment variable(s): ['G']
Covariates: ['X']
Instrument variable(s): None
Time variable: period
Id variable: id
No. Unique Ids: 3979
No. Observations: 15916

------------------ DataFrame info    ------------------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15916 entries, 0 to 15915
Columns: 7 entries, G to treat
dtypes: float64(3), int64(4)
memory usage: 870.5 KB

ATT Estimation#

The DoubleML-package implements estimation of group-time average treatment effect via the DoubleMLDIDMulti class (see model documentation).

The class basically behaves like other DoubleML classes and requires the specification of two learners (for more details on the regression elements, see score documentation). The model will be estimated using the fit() method.

[5]:
dml_obj = DoubleMLDIDMulti(
    obj_dml_data=dml_data,
    ml_g=LinearRegression(),
    ml_m=LogisticRegression(),
    control_group="never_treated",
)

dml_obj.fit()
print(dml_obj)
================== DoubleMLDIDMulti Object ==================

------------------ Data summary      ------------------
Outcome variable: Y
Treatment variable(s): ['G']
Covariates: ['X']
Instrument variable(s): None
Time variable: period
Id variable: id
No. Unique Ids: 3979
No. Observations: 15916

------------------ Score & algorithm ------------------
Score function: observational
Control group: never_treated
Anticipation periods: 0

------------------ Machine learner   ------------------
Learner ml_g: LinearRegression()
Learner ml_m: LogisticRegression()
Out-of-sample Performance:
Regression:
Learner ml_g0 RMSE: [[1.42563256 1.409359   1.3985256  1.4270334  1.4052364  1.42488405
  1.42510305 1.40408972 1.42308093]]
Learner ml_g1 RMSE: [[1.40274824 1.43489148 1.39383671 1.41383313 1.42742131 1.38405574
  1.45956884 1.41654757 1.40661598]]
Classification:
Learner ml_m Log Loss: [[0.69070226 0.6909926  0.69094586 0.67987456 0.67969173 0.67923975
  0.66226424 0.66208231 0.66199596]]

------------------ Resampling        ------------------
No. folds: 5
No. repeated sample splits: 1

------------------ Fit summary       ------------------
                  coef   std err          t     P>|t|     2.5 %    97.5 %
ATT(2.0,1,2)  0.917958  0.063995  14.344166  0.000000  0.792529  1.043386
ATT(2.0,1,3)  1.988177  0.064563  30.794148  0.000000  1.861635  2.114719
ATT(2.0,1,4)  2.956786  0.063172  46.805155  0.000000  2.832971  3.080601
ATT(3.0,1,2) -0.041510  0.066026  -0.628701  0.529545 -0.170918  0.087897
ATT(3.0,2,3)  1.106975  0.065522  16.894804  0.000000  0.978555  1.235395
ATT(3.0,2,4)  2.057796  0.065670  31.335411  0.000000  1.929086  2.186507
ATT(4.0,1,2)  0.005414  0.068437   0.079109  0.936946 -0.128720  0.139548
ATT(4.0,2,3)  0.059705  0.066424   0.898839  0.368739 -0.070484  0.189893
ATT(4.0,3,4)  0.949071  0.067564  14.047014  0.000000  0.816648  1.081494

The summary displays estimates of the \(ATT(g,t_\text{eval})\) effects for different combinations of \((g,t_\text{eval})\) via \(\widehat{ATT}(\mathrm{g},t_\text{pre},t_\text{eval})\), where

  • \(\mathrm{g}\) specifies the group

  • \(t_\text{pre}\) specifies the corresponding pre-treatment period

  • \(t_\text{eval}\) specifies the evaluation period

This corresponds to the estimates given in att_gt function in the did-R-package, where the standard choice is \(t_\text{pre} = \min(\mathrm{g}, t_\text{eval}) - 1\) (without anticipation).

Remark that this includes pre-tests effects if \(\mathrm{g} > t_{eval}\), e.g. \(ATT(4,2)\).

As usual for the DoubleML-package, you can obtain joint confidence intervals via bootstrap.

[6]:
level = 0.95

ci = dml_obj.confint(level=level)
dml_obj.bootstrap(n_rep_boot=5000)
ci_joint = dml_obj.confint(level=level, joint=True)
ci_joint
[6]:
2.5 % 97.5 %
ATT(2.0,1,2) 0.743746 1.092170
ATT(2.0,1,3) 1.812418 2.163936
ATT(2.0,1,4) 2.784814 3.128758
ATT(3.0,1,2) -0.221250 0.138229
ATT(3.0,2,3) 0.928608 1.285343
ATT(3.0,2,4) 1.879025 2.236568
ATT(4.0,1,2) -0.180890 0.191718
ATT(4.0,2,3) -0.121120 0.240529
ATT(4.0,3,4) 0.765144 1.132998

A visualization of the effects can be obtained via the plot_effects() method.

Remark that the plot used joint confidence intervals per default.

[7]:
fig, ax = dml_obj.plot_effects()
/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/matplotlib/cbook.py:1719: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead
  return math.isfinite(val)
/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/matplotlib/cbook.py:1719: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead
  return math.isfinite(val)
../../_images/examples_did_py_panel_simple_14_1.png

Effect Aggregation#

As the did-R-package, the \(ATT\)’s can be aggregated to summarize multiple effects. For details on different aggregations and details on their interpretations see Callaway and Sant’Anna(2021).

The aggregations are implemented via the aggregate() method.

Group Aggregation#

To obtain group-specific effects it is possible to aggregate several \(\widehat{ATT}(\mathrm{g},t_\text{pre},t_\text{eval})\) values based on the group \(\mathrm{g}\) by setting the aggregation="group" argument.

[8]:
aggregated = dml_obj.aggregate(aggregation="group")
print(aggregated)
_ = aggregated.plot_effects()
================== DoubleMLDIDAggregation Object ==================
 Group Aggregation

------------------ Overall Aggregated Effects ------------------
    coef  std err         t  P>|t|   2.5 %   97.5 %
1.486477 0.034244 43.408834    0.0 1.41936 1.553593
------------------ Aggregated Effects         ------------------
         coef   std err          t  P>|t|     2.5 %    97.5 %
2.0  1.954307  0.052192  37.444342    0.0  1.852012  2.056602
3.0  1.582386  0.056413  28.050090    0.0  1.471819  1.692953
4.0  0.949071  0.067564  14.047014    0.0  0.816648  1.081494
------------------ Additional Information     ------------------
Score function: observational
Control group: never_treated
Anticipation periods: 0

/home/runner/work/doubleml-docs/doubleml-docs/doubleml-for-py/doubleml/did/did_aggregation.py:368: UserWarning: Joint confidence intervals require bootstrapping which hasn't been performed yet. Automatically applying '.aggregated_frameworks.bootstrap(method="normal", n_rep_boot=500)' with default values. For different bootstrap settings, call bootstrap() explicitly before plotting.
  warnings.warn(
../../_images/examples_did_py_panel_simple_17_2.png

The output is a DoubleMLDIDAggregation object which includes an overall aggregation summary based on group size.

Time Aggregation#

This aggregates \(\widehat{ATT}(\mathrm{g},t_\text{pre},t_\text{eval})\), based on \(t_\text{eval}\), but weighted with respect to group size. Corresponds to Calendar Time Effects from the did-R-package.

For calendar time effects set aggregation="time".

[9]:
aggregated_time = dml_obj.aggregate("time")
print(aggregated_time)
fig, ax = aggregated_time.plot_effects()
================== DoubleMLDIDAggregation Object ==================
 Time Aggregation

------------------ Overall Aggregated Effects ------------------
    coef  std err         t  P>|t|    2.5 %   97.5 %
1.479422 0.035077 42.176855    0.0 1.410673 1.548171
------------------ Aggregated Effects         ------------------
       coef   std err          t  P>|t|     2.5 %    97.5 %
2  0.917958  0.063995  14.344166    0.0  0.792529  1.043386
3  1.548928  0.051369  30.152678    0.0  1.448245  1.649610
4  1.971382  0.046640  42.268275    0.0  1.879970  2.062794
------------------ Additional Information     ------------------
Score function: observational
Control group: never_treated
Anticipation periods: 0

/home/runner/work/doubleml-docs/doubleml-docs/doubleml-for-py/doubleml/did/did_aggregation.py:368: UserWarning: Joint confidence intervals require bootstrapping which hasn't been performed yet. Automatically applying '.aggregated_frameworks.bootstrap(method="normal", n_rep_boot=500)' with default values. For different bootstrap settings, call bootstrap() explicitly before plotting.
  warnings.warn(
../../_images/examples_did_py_panel_simple_20_2.png

Event Study Aggregation#

Finally, aggregation="eventstudy" aggregates \(\widehat{ATT}(\mathrm{g},t_\text{pre},t_\text{eval})\) based on exposure time \(e = t_\text{eval} - \mathrm{g}\) (respecting group size).

[10]:
aggregated_eventstudy = dml_obj.aggregate("eventstudy")
print(aggregated_eventstudy)
fig, ax = aggregated_eventstudy.plot_effects()
================== DoubleMLDIDAggregation Object ==================
 Event Study Aggregation

------------------ Overall Aggregated Effects ------------------
    coef  std err         t  P>|t|    2.5 %   97.5 %
1.990034 0.038725 51.388807    0.0 1.914134 2.065934
------------------ Aggregated Effects         ------------------
          coef   std err          t     P>|t|     2.5 %    97.5 %
-2.0  0.005414  0.068437   0.079109  0.936946 -0.128720  0.139548
-1.0  0.010436  0.040484   0.257783  0.796574 -0.068912  0.089784
0.0   0.990437  0.030711  32.249873  0.000000  0.930243  1.050630
1.0   2.022880  0.045744  44.221888  0.000000  1.933223  2.112536
2.0   2.956786  0.063172  46.805155  0.000000  2.832971  3.080601
------------------ Additional Information     ------------------
Score function: observational
Control group: never_treated
Anticipation periods: 0

/home/runner/work/doubleml-docs/doubleml-docs/doubleml-for-py/doubleml/did/did_aggregation.py:368: UserWarning: Joint confidence intervals require bootstrapping which hasn't been performed yet. Automatically applying '.aggregated_frameworks.bootstrap(method="normal", n_rep_boot=500)' with default values. For different bootstrap settings, call bootstrap() explicitly before plotting.
  warnings.warn(
../../_images/examples_did_py_panel_simple_22_2.png

Aggregation Details#

The DoubleMLDIDAggregation objects include several DoubleMLFrameworks which support methods like bootstrap() or confint(). Further, the weights can be accessed via the properties

  • overall_aggregation_weights: weights for the overall aggregation

  • aggregation_weights: weights for the aggregation

To clarify, e.g. for the eventstudy aggregation

[11]:
print(aggregated_eventstudy)
================== DoubleMLDIDAggregation Object ==================
 Event Study Aggregation

------------------ Overall Aggregated Effects ------------------
    coef  std err         t  P>|t|    2.5 %   97.5 %
1.990034 0.038725 51.388807    0.0 1.914134 2.065934
------------------ Aggregated Effects         ------------------
          coef   std err          t     P>|t|     2.5 %    97.5 %
-2.0  0.005414  0.068437   0.079109  0.936946 -0.128720  0.139548
-1.0  0.010436  0.040484   0.257783  0.796574 -0.068912  0.089784
0.0   0.990437  0.030711  32.249873  0.000000  0.930243  1.050630
1.0   2.022880  0.045744  44.221888  0.000000  1.933223  2.112536
2.0   2.956786  0.063172  46.805155  0.000000  2.832971  3.080601
------------------ Additional Information     ------------------
Score function: observational
Control group: never_treated
Anticipation periods: 0

Here, the overall effect aggregation aggregates each effect with positive exposure

[12]:
print(aggregated_eventstudy.overall_aggregation_weights)
[0.         0.         0.33333333 0.33333333 0.33333333]

If one would like to consider how the aggregated effect with \(e=0\) is computed, one would have to look at the third set of weights within the aggregation_weights property

[13]:
aggregated_eventstudy.aggregation_weights[2]
[13]:
array([0.32875335, 0.        , 0.        , 0.        , 0.32674263,
       0.        , 0.        , 0.        , 0.34450402])

Taking a look at the original dml_obj, one can see that this combines the following estimates:

  • \(\widehat{ATT}(2,1,2)\)

  • \(\widehat{ATT}(3,2,3)\)

  • \(\widehat{ATT}(4,3,4)\)

[14]:
print(dml_obj.summary)
                  coef   std err          t     P>|t|     2.5 %    97.5 %
ATT(2.0,1,2)  0.917958  0.063995  14.344166  0.000000  0.792529  1.043386
ATT(2.0,1,3)  1.988177  0.064563  30.794148  0.000000  1.861635  2.114719
ATT(2.0,1,4)  2.956786  0.063172  46.805155  0.000000  2.832971  3.080601
ATT(3.0,1,2) -0.041510  0.066026  -0.628701  0.529545 -0.170918  0.087897
ATT(3.0,2,3)  1.106975  0.065522  16.894804  0.000000  0.978555  1.235395
ATT(3.0,2,4)  2.057796  0.065670  31.335411  0.000000  1.929086  2.186507
ATT(4.0,1,2)  0.005414  0.068437   0.079109  0.936946 -0.128720  0.139548
ATT(4.0,2,3)  0.059705  0.066424   0.898839  0.368739 -0.070484  0.189893
ATT(4.0,3,4)  0.949071  0.067564  14.047014  0.000000  0.816648  1.081494