3.2.7. doubleml.plm.datasets.make_plr_CCDDHNR2018#
- doubleml.plm.datasets.make_plr_CCDDHNR2018(n_obs=500, dim_x=20, alpha=0.5, return_type='DoubleMLData', **kwargs)#
- Generates data from a partially linear regression model used in Chernozhukov et al. (2018) for Figure 1. The data generating process is defined as \[ \begin{align}\begin{aligned}d_i &= m_0(x_i) + s_1 v_i, & &v_i \sim \mathcal{N}(0,1),\\y_i &= \alpha d_i + g_0(x_i) + s_2 \zeta_i, & &\zeta_i \sim \mathcal{N}(0,1),\end{aligned}\end{align} \]- with covariates \(x_i \sim \mathcal{N}(0, \Sigma)\), where \(\Sigma\) is a matrix with entries \(\Sigma_{kj} = 0.7^{|j-k|}\). The nuisance functions are given by \[ \begin{align}\begin{aligned}m_0(x_i) &= a_0 x_{i,1} + a_1 \frac{\exp(x_{i,3})}{1+\exp(x_{i,3})},\\g_0(x_i) &= b_0 \frac{\exp(x_{i,1})}{1+\exp(x_{i,1})} + b_1 x_{i,3}.\end{aligned}\end{align} \]- Parameters:
- n_obs – The number of observations to simulate. 
- dim_x – The number of covariates. 
- alpha – The value of the causal parameter. 
- return_type – - If - 'DoubleMLData'or- DoubleMLData, returns a- DoubleMLDataobject.- If - 'DataFrame',- 'pd.DataFrame'or- pd.DataFrame, returns a- pd.DataFrame.- If - 'array',- 'np.ndarray',- 'np.array'or- np.ndarray, returns- np.ndarray’s- (x, y, d).
- **kwargs – Additional keyword arguments to set non-default values for the parameters \(a_0=1\), \(a_1=0.25\), \(s_1=1\), \(b_0=1\), \(b_1=0.25\) or \(s_2=1\). 
 
 - References - Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2018), Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21: C1-C68. doi:10.1111/ectj.12097. 
 
    
  
  
    