2. DoubleML Models#

2.1. doubleml.plm#

DoubleMLPLR(obj_dml_data, ml_l, ml_m[, ...])

Double machine learning for partially linear regression models

DoubleMLPLIV(obj_dml_data, ml_l, ml_m, ml_r)

Double machine learning for partially linear IV regression models

2.2. doubleml.irm#

DoubleMLIRM(obj_dml_data, ml_g, ml_m[, ...])

Double machine learning for interactive regression models

DoubleMLAPO(obj_dml_data, ml_g, ml_m, ...[, ...])

Double machine learning average potential outcomes for interactive regression models.

DoubleMLAPOS(obj_dml_data, ml_g, ml_m, ...)

Double machine learning for interactive regression models with multiple discrete treatments.

DoubleMLIIVM(obj_dml_data, ml_g, ml_m, ml_r)

Double machine learning for interactive IV regression models

DoubleMLPQ(obj_dml_data, ml_g, ml_m[, ...])

Double machine learning for potential quantiles

DoubleMLLPQ(obj_dml_data, ml_g, ml_m[, ...])

Double machine learning for local potential quantiles

DoubleMLCVAR(obj_dml_data, ml_g, ml_m[, ...])

Double machine learning for conditional value at risk for potential outcomes

DoubleMLQTE(obj_dml_data, ml_g[, ml_m, ...])

Double machine learning for quantile treatment effects

DoubleMLSSM(obj_dml_data, ml_g, ml_pi, ml_m)

Double machine learning for sample selection models

2.3. doubleml.did#

DoubleMLDIDMulti(obj_dml_data, ml_g[, ml_m, ...])

Double machine learning for multi-period difference-in-differences models.

DoubleMLDIDAggregation(frameworks, ...[, ...])

Class for aggregating multiple difference-in-differences (DID) frameworks.

DoubleMLDIDBinary(obj_dml_data, g_value, ...)

Double machine learning for difference-in-differences models with panel data (binary setting in terms of group and time

DoubleMLDID(obj_dml_data, ml_g[, ml_m, ...])

Double machine learning for difference-in-differences models with panel data (two time periods).

DoubleMLDIDCS(obj_dml_data, ml_g[, ml_m, ...])

Double machine learning for difference-in-difference with repeated cross-sections.

2.4. doubleml.rdd#

RDFlex(obj_dml_data, ml_g[, ml_m, fuzzy, ...])

Flexible adjustment with double machine learning for regression discontinuity designs