5. Utility Classes and Functions#

5.1. Utility Classes#

utils.DMLDummyRegressor()

A dummy regressor that raises an AttributeError when attempting to access its fit, predict, or set_params methods.

utils.DMLDummyClassifier()

A dummy classifier that raises an AttributeError when attempting to access its fit, predict, set_params, or predict_proba methods.

utils.DoubleMLBLP(orth_signal, basis[, is_gate])

Best linear predictor (BLP) for DoubleML with orthogonal signals.

utils.DoubleMLPolicyTree(orth_signal, features)

Policy Tree fitting for DoubleML.

utils.GlobalRegressor(base_estimator)

A global regressor that ignores the attribute sample_weight when being fit to ensure a global fit.

utils.GlobalClassifier(base_estimator)

A global classifier that ignores the attribute sample_weight when being fit to ensure a global fit.

5.2. Utility Functions#

utils.gain_statistics(dml_long, dml_short)

Compute gain statistics as benchmark values for sensitivity parameters cf_d and cf_y.