5.1.1. doubleml.utils.DMLDummyRegressor#
- class doubleml.utils.DMLDummyRegressor#
A dummy regressor that raises an AttributeError when attempting to access its fit, predict, or set_params methods.
Methods
fit
()Raises AttributeError: "Accessed fit method of DummyRegressor!"
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
()Raises AttributeError: "Accessed predict method of DummyRegressor!"
score
(X, y[, sample_weight])Return the coefficient of determination of the prediction.
Raises AttributeError: "Accessed set_params method of DummyRegressor!"
set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.
- DMLDummyRegressor.fit()#
Raises AttributeError: “Accessed fit method of DummyRegressor!”
- DMLDummyRegressor.get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequest
encapsulating routing information.- Return type:
MetadataRequest
- DMLDummyRegressor.get_params(deep=True)#
Get parameters for this estimator.
- DMLDummyRegressor.predict()#
Raises AttributeError: “Accessed predict method of DummyRegressor!”
- DMLDummyRegressor.score(X, y, sample_weight=None)#
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred)** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns:
score – \(R^2\) of
self.predict(X)
w.r.t. y.- Return type:
Notes
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score()
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).
- DMLDummyRegressor.set_params()#
Raises AttributeError: “Accessed set_params method of DummyRegressor!”
- DMLDummyRegressor.set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') DMLDummyRegressor #
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.