doubleml.utils.GlobalClassifier#
- class doubleml.utils.GlobalClassifier(base_estimator)#
A global classifier that ignores the attribute
sample_weight
when being fit to ensure a global fit.- Parameters:
base_estimator (classifier implementing
fit()
andpredict_proba()
)fit() (Classifier that is used when)
called. (predict() and predict_proba() are being)
Methods
fit
(X, y[, sample_weight])Fits the classifier provided in
base_estimator
.Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predicts using the classifier provided in
base_estimator
.Probability estimates using the classifier provided in
base_estimator
.score
(X, y[, sample_weight])Return the mean accuracy on the given test data and labels.
set_fit_request
(*[, sample_weight])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.
- GlobalClassifier.fit(X, y, sample_weight=None)#
Fits the classifier provided in
base_estimator
. Ignoressample_weight
.- Parameters:
X (array-like of shape (n_samples, n_features))
data. (Training)
y (array-like of shape (n_samples,) or (n_samples, n_targets))
classes. (Target)
sample_weight (array-like of shape (n_samples,).)
Ignored. (Individual weights for each sample.)
- GlobalClassifier.get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequest
encapsulating routing information.- Return type:
MetadataRequest
- GlobalClassifier.get_params(deep=True)#
Get parameters for this estimator.
- GlobalClassifier.predict(X)#
Predicts using the classifier provided in
base_estimator
.- Parameters:
X (array-like of shape (n_samples, n_features))
Samples.
- GlobalClassifier.predict_proba(X)#
Probability estimates using the classifier provided in
base_estimator
. The returned estimates for all classes are ordered by the label of classes.- Parameters:
X (array-like of shape (n_samples, n_features))
scored. (Samples to be)
- GlobalClassifier.score(X, y, sample_weight=None)#
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns:
score – Mean accuracy of
self.predict(X)
w.r.t. y.- Return type:
- GlobalClassifier.set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') GlobalClassifier #
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.
- GlobalClassifier.set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- GlobalClassifier.set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') GlobalClassifier #
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.