1.5. doubleml.data.DoubleMLRDDData#

class doubleml.data.DoubleMLRDDData(data, y_col, d_cols, score_col, x_cols=None, z_cols=None, cluster_cols=None, use_other_treat_as_covariate=True, force_all_x_finite=True, force_all_d_finite=True)#

Double machine learning data-backend for Regression Discontinuity Design models.

DoubleMLRDDData objects can be initialized from pandas.DataFrame’s as well as numpy.ndarray’s.

Parameters:
  • data (pandas.DataFrame) – The data.

  • y_col (str) – The outcome variable.

  • d_cols (str or list) – The treatment variable(s).

  • score_col (str) – The score/running variable for RDD models.

  • x_cols (None, str or list) – The covariates. If None, all variables (columns of data) which are neither specified as outcome variable y_col, nor treatment variables d_cols, nor instrumental variables z_cols, nor score variable score_col are used as covariates. Default is None.

  • z_cols (None, str or list) – The instrumental variable(s). Default is None.

  • cluster_cols (None, str or list) – The cluster variable(s). Default is None.

  • use_other_treat_as_covariate (bool) – Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default is True.

  • force_all_x_finite (bool or str) – Indicates whether to raise an error on infinite values and / or missings in the covariates x. Possible values are: True (neither missings np.nan, pd.NA nor infinite values np.inf are allowed), False (missings and infinite values are allowed), 'allow-nan' (only missings are allowed). Note that the choice False and 'allow-nan' are only reasonable if the machine learning methods used for the nuisance functions are capable to provide valid predictions with missings and / or infinite values in the covariates x. Default is True.

  • force_all_d_finite (bool) – Indicates whether to raise an error on infinite values and / or missings in the treatment variables d. Default is True.

Examples

>>> from doubleml import DoubleMLRDDData
>>> from doubleml.rdd.datasets import make_rdd_data
>>> # initialization from pandas.DataFrame
>>> df = make_rdd_data(return_type='DataFrame')
>>> obj_dml_data_from_df = DoubleMLRDDData(df, 'y', 'd', 's')
>>> # initialization from np.ndarray
>>> (x, y, d, s) = make_rdd_data(return_type='array')
>>> obj_dml_data_from_array = DoubleMLRDDData.from_arrays(x, y, d, s=s)

Methods

from_arrays(x, y, d, score[, z, ...])

Initialize DoubleMLRDDData object from numpy.ndarray's.

set_x_d(treatment_var)

Function that assigns the role for the treatment variables in the multiple-treatment case.

Attributes

all_variables

All variables available in the dataset.

binary_outcome

Logical indicating whether the outcome variable is binary with values 0 and 1.

binary_treats

Series with logical(s) indicating whether the treatment variable(s) are binary with values 0 and 1.

cluster_cols

The cluster variable(s).

cluster_vars

Array of cluster variable(s).

d

Array of treatment variable; Dynamic! Depends on the currently set treatment variable; To get an array of all treatment variables (independent of the currently set treatment variable) call obj.data[obj.d_cols].values.

d_cols

The treatment variable(s).

data

The data.

force_all_d_finite

Indicates whether to raise an error on infinite values and / or missings in the treatment variables d.

force_all_x_finite

Indicates whether to raise an error on infinite values and / or missings in the covariates x.

is_cluster_data

Flag indicating whether this data object is being used for cluster data.

n_cluster_vars

The number of cluster variables.

n_coefs

The number of coefficients to be estimated.

n_instr

The number of instruments.

n_obs

The number of observations.

n_treat

The number of treatment variables.

score

Array of score/running variable.

score_col

The score/running variable.

use_other_treat_as_covariate

Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates.

x

Array of covariates; Dynamic! May depend on the currently set treatment variable; To get an array of all covariates (independent of the currently set treatment variable) call obj.data[obj.x_cols].values.

x_cols

The covariates.

y

Array of outcome variable.

y_col

The outcome variable.

z

Array of instrumental variables.

z_cols

The instrumental variable(s).

classmethod DoubleMLRDDData.from_arrays(x, y, d, score, z=None, cluster_vars=None, use_other_treat_as_covariate=True, force_all_x_finite=True, force_all_d_finite=True)#

Initialize DoubleMLRDDData object from numpy.ndarray’s.

Parameters:
  • x (numpy.ndarray) – Array of covariates.

  • y (numpy.ndarray) – Array of the outcome variable.

  • d (numpy.ndarray) – Array of treatment variables.

  • score (numpy.ndarray) – Array of the score/running variable for RDD models.

  • z (None or numpy.ndarray) – Array of instrumental variables. Default is None.

  • cluster_vars (None or numpy.ndarray) – Array of cluster variables. Default is None.

  • use_other_treat_as_covariate (bool) – Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default is True.

  • force_all_x_finite (bool or str) – Indicates whether to raise an error on infinite values and / or missings in the covariates x. Possible values are: True (neither missings np.nan, pd.NA nor infinite values np.inf are allowed), False (missings and infinite values are allowed), 'allow-nan' (only missings are allowed). Note that the choice False and 'allow-nan' are only reasonable if the machine learning methods used for the nuisance functions are capable to provide valid predictions with missings and / or infinite values in the covariates x. Default is True.

  • force_all_d_finite (bool) – Indicates whether to raise an error on infinite values and / or missings in the treatment variables d. Default is True.

Examples

>>> from doubleml import DoubleMLRDDData
>>> from doubleml.rdd.datasets import make_rdd_data
>>> (x, y, d, s) = make_rdd_data(return_type='array')
>>> obj_dml_data_from_array = DoubleMLRDDData.from_arrays(x, y, d, s=s)
DoubleMLRDDData.set_x_d(treatment_var)#

Function that assigns the role for the treatment variables in the multiple-treatment case.

Parameters:

treatment_var (str) – Active treatment variable that will be set to d.