1.5. doubleml.data.DoubleMLRDDData#
- class doubleml.data.DoubleMLRDDData(data, y_col, d_cols, score_col, x_cols=None, z_cols=None, cluster_cols=None, use_other_treat_as_covariate=True, force_all_x_finite=True, force_all_d_finite=True)#
Double machine learning data-backend for Regression Discontinuity Design models.
DoubleMLRDDData
objects can be initialized frompandas.DataFrame
’s as well asnumpy.ndarray
’s.- Parameters:
data (
pandas.DataFrame
) – The data.y_col (str) – The outcome variable.
score_col (str) – The score/running variable for RDD models.
x_cols (None, str or list) – The covariates. If
None
, all variables (columns ofdata
) which are neither specified as outcome variabley_col
, nor treatment variablesd_cols
, nor instrumental variablesz_cols
, nor score variablescore_col
are used as covariates. Default isNone
.z_cols (None, str or list) – The instrumental variable(s). Default is
None
.cluster_cols (None, str or list) – The cluster variable(s). Default is
None
.use_other_treat_as_covariate (bool) – Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default is
True
.force_all_x_finite (bool or str) – Indicates whether to raise an error on infinite values and / or missings in the covariates
x
. Possible values are:True
(neither missingsnp.nan
,pd.NA
nor infinite valuesnp.inf
are allowed),False
(missings and infinite values are allowed),'allow-nan'
(only missings are allowed). Note that the choiceFalse
and'allow-nan'
are only reasonable if the machine learning methods used for the nuisance functions are capable to provide valid predictions with missings and / or infinite values in the covariatesx
. Default isTrue
.force_all_d_finite (bool) – Indicates whether to raise an error on infinite values and / or missings in the treatment variables
d
. Default isTrue
.
Examples
>>> from doubleml import DoubleMLRDDData >>> from doubleml.rdd.datasets import make_rdd_data >>> # initialization from pandas.DataFrame >>> df = make_rdd_data(return_type='DataFrame') >>> obj_dml_data_from_df = DoubleMLRDDData(df, 'y', 'd', 's') >>> # initialization from np.ndarray >>> (x, y, d, s) = make_rdd_data(return_type='array') >>> obj_dml_data_from_array = DoubleMLRDDData.from_arrays(x, y, d, s=s)
Methods
from_arrays
(x, y, d, score[, z, ...])Initialize
DoubleMLRDDData
object fromnumpy.ndarray
's.set_x_d
(treatment_var)Function that assigns the role for the treatment variables in the multiple-treatment case.
Attributes
all_variables
All variables available in the dataset.
binary_outcome
Logical indicating whether the outcome variable is binary with values 0 and 1.
binary_treats
Series with logical(s) indicating whether the treatment variable(s) are binary with values 0 and 1.
cluster_cols
The cluster variable(s).
cluster_vars
Array of cluster variable(s).
d
Array of treatment variable; Dynamic! Depends on the currently set treatment variable; To get an array of all treatment variables (independent of the currently set treatment variable) call
obj.data[obj.d_cols].values
.d_cols
The treatment variable(s).
data
The data.
force_all_d_finite
Indicates whether to raise an error on infinite values and / or missings in the treatment variables
d
.force_all_x_finite
Indicates whether to raise an error on infinite values and / or missings in the covariates
x
.is_cluster_data
Flag indicating whether this data object is being used for cluster data.
n_cluster_vars
The number of cluster variables.
n_coefs
The number of coefficients to be estimated.
n_instr
The number of instruments.
n_obs
The number of observations.
n_treat
The number of treatment variables.
score
Array of score/running variable.
score_col
The score/running variable.
use_other_treat_as_covariate
Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates.
x
Array of covariates; Dynamic! May depend on the currently set treatment variable; To get an array of all covariates (independent of the currently set treatment variable) call
obj.data[obj.x_cols].values
.x_cols
The covariates.
y
Array of outcome variable.
y_col
The outcome variable.
z
Array of instrumental variables.
z_cols
The instrumental variable(s).
- classmethod DoubleMLRDDData.from_arrays(x, y, d, score, z=None, cluster_vars=None, use_other_treat_as_covariate=True, force_all_x_finite=True, force_all_d_finite=True)#
Initialize
DoubleMLRDDData
object fromnumpy.ndarray
’s.- Parameters:
x (
numpy.ndarray
) – Array of covariates.y (
numpy.ndarray
) – Array of the outcome variable.d (
numpy.ndarray
) – Array of treatment variables.score (
numpy.ndarray
) – Array of the score/running variable for RDD models.z (None or
numpy.ndarray
) – Array of instrumental variables. Default isNone
.cluster_vars (None or
numpy.ndarray
) – Array of cluster variables. Default isNone
.use_other_treat_as_covariate (bool) – Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default is
True
.force_all_x_finite (bool or str) – Indicates whether to raise an error on infinite values and / or missings in the covariates
x
. Possible values are:True
(neither missingsnp.nan
,pd.NA
nor infinite valuesnp.inf
are allowed),False
(missings and infinite values are allowed),'allow-nan'
(only missings are allowed). Note that the choiceFalse
and'allow-nan'
are only reasonable if the machine learning methods used for the nuisance functions are capable to provide valid predictions with missings and / or infinite values in the covariatesx
. Default isTrue
.force_all_d_finite (bool) – Indicates whether to raise an error on infinite values and / or missings in the treatment variables
d
. Default isTrue
.
Examples
>>> from doubleml import DoubleMLRDDData >>> from doubleml.rdd.datasets import make_rdd_data >>> (x, y, d, s) = make_rdd_data(return_type='array') >>> obj_dml_data_from_array = DoubleMLRDDData.from_arrays(x, y, d, s=s)