1.2. doubleml.data.DoubleMLClusterData#
- class doubleml.data.DoubleMLClusterData(data, y_col, d_cols, cluster_cols, x_cols=None, z_cols=None, t_col=None, s_col=None, use_other_treat_as_covariate=True, force_all_x_finite=True)#
Backwards compatibility wrapper for DoubleMLData with cluster_cols. This class is deprecated and will be removed in a future version. Use DoubleMLData with cluster_cols instead.
Methods
from_arrays
(x, y, d, cluster_vars[, z, t, ...])Initialize
DoubleMLClusterData
fromnumpy.ndarray
's.set_x_d
(treatment_var)Function that assigns the role for the treatment variables in the multiple-treatment case.
Attributes
all_variables
All variables available in the dataset.
binary_outcome
Logical indicating whether the outcome variable is binary with values 0 and 1.
binary_treats
Series with logical(s) indicating whether the treatment variable(s) are binary with values 0 and 1.
cluster_cols
The cluster variable(s).
cluster_vars
Array of cluster variable(s).
d
Array of treatment variable; Dynamic! Depends on the currently set treatment variable; To get an array of all treatment variables (independent of the currently set treatment variable) call
obj.data[obj.d_cols].values
.d_cols
The treatment variable(s).
data
The data.
force_all_d_finite
Indicates whether to raise an error on infinite values and / or missings in the treatment variables
d
.force_all_x_finite
Indicates whether to raise an error on infinite values and / or missings in the covariates
x
.is_cluster_data
Flag indicating whether this data object is being used for cluster data.
n_cluster_vars
The number of cluster variables.
n_coefs
The number of coefficients to be estimated.
n_instr
The number of instruments.
n_obs
The number of observations.
n_treat
The number of treatment variables.
use_other_treat_as_covariate
Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates.
x
Array of covariates; Dynamic! May depend on the currently set treatment variable; To get an array of all covariates (independent of the currently set treatment variable) call
obj.data[obj.x_cols].values
.x_cols
The covariates.
y
Array of outcome variable.
y_col
The outcome variable.
z
Array of instrumental variables.
z_cols
The instrumental variable(s).
- classmethod DoubleMLClusterData.from_arrays(x, y, d, cluster_vars, z=None, t=None, s=None, use_other_treat_as_covariate=True, force_all_x_finite=True)#
Initialize
DoubleMLClusterData
fromnumpy.ndarray
’s. This method is deprecated and will be removed with version 0.12.0, use DoubleMLData.from_arrays with cluster_vars instead.