Double machine learning literature#
Main Reference
Software for double machine learning
Philipp Bach, Victor Chernozhukov, Malte S. Kurz, Martin Spindler
DoubleML – An Object-Oriented Implementation of Double Machine Learning in Python
Journal of Machine Learning Research, 23(53): 1-6, 2022
Python Package DoubleML
URL arXiv PyPI conda-forge GitHubPhilipp Bach, Victor Chernozhukov, Malte S. Kurz, Martin Spindler, Sven Klaassen
DoubleML – An Object-Oriented Implementation of Double Machine Learning in R
Journal of Statistical Software, 108(3), 1-56, 2024
R Package DoubleML
URL arXiv CRAN GitHubKeith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis
EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation
2019
Python Package EconML
GitHubHugo Bodory, Martin Huber
The causalweight package for causal inference in R
Working Papers SES 493, Faculty of Economics and Social Science, University of Fribourg, 2018
R Package causalweight
URL CRANMichael C. Knaus
Double Machine Learning based Program Evaluation under Unconfoundedness
arXiv preprint arXiv:2003.03191 [econ.EM], 2020
R Package causalDML
arXiv GitHubMichael C. Knaus
A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student’s Skills
Journal of the Royal Statistical Society A, 184(1), 282-300, 2021
R Package dmlmt
URL arXiv GitHubMalte S. Kurz
Distributed Double Machine Learning with a Serverless Architecture
In Companion of the ACM/SPEC International Conference on Performance Engineering (ICPE ‘21). Association for Computing Machinery, New York, NY, USA, 27-33, 2021
Python Package DoubleML-Serverless
URL arXiv GitHubJuraj Szitas
postDoubleR: Post Double Selection with Double Machine Learning
2019
R Package postDoubleR
GitHub
Double machine learning models and methodological extensions
Susan Athey, Stefan Wager
Policy Learning With Observational Data
Econometrica, 89(1), Pages 133–161, 2021
URLMichela Bia, Martin Huber, Lukas Laffers
Double Machine Learning for Sample Selection Models
* Journal of Business & Economic Statistics, 1-12., 2023*
URLNeng-Chieh Chang
Double/debiased machine learning for difference-in-differences models
The Econometrics Journal, 23(2), Pages 177–191, 2020
URLChernozhukov, Victor and Demirer, Mert and Duflo, Esther and Fernández-Val, Iván
Generic Machine Learning Inference on Heterogeneous Treatment Effects in Randomized Experiments, with an Application to Immunization in India
National Bureau of Economic Research, Working Paper
URLHarold D. Chiang, Kengo Kato, Yukun Ma, Yuya Sasaki
Multiway Cluster Robust Double/Debiased Machine Learning
Journal of Business & Economic Statistics, forthcoming, 2021
URL arXivNathan Kallus, Xiaojie Mao, Masatoshi Uehara
Localized Debiased Machine Learning: Efficient Inference on Quantile Treatment Effects and Beyond
arXiv preprint arXiv:1912.12945 [stat.ML], 2019
arXivNathan Kallus, Masatoshi Uehara
Double Reinforcement Learning for Efficient Off-Policy Evaluation in Markov Decision Processes
Journal of Machine Learning Research 21, 1-63, 2020
URLYusuke Narita, Shota Yasui, Kohei Yata
Debiased Off-Policy Evaluation for Recommendation Systems
RecSys ‘21: Fifteenth ACM Conference on Recommender Systems, 372–379, 2021
URL arXivLester Mackey, Vasilis Syrgkanis, Ilias Zadik
Orthogonal Machine Learning: Power and Limitations
Proceedings of the 35th International Conference on Machine Learning, 2018
URL arXivPedro HC Sant’Anna, Jun Zhao
Doubly robust difference-in-differences estimators
Journal of Econometrics, 219(1), Pages 101-122, 2020
URLVictor Chernozhukov, Carlos Cinelli, Whitney Newey, Amit Sharma, Vasilis Syrgkanis
Long Story Short: Omitted Variable Bias in Causal Machine Learning
No. w30302. National Bureau of Economic Research, 2022
URLVira Semenova, Victor Chernozhukov
Debiased machine learning of conditional average treatment effects and other causal functions
The Econometrics Journal, 24(2), Pages 264-289, 2021
URLVira Semenova, Matt Goldman, Victor Chernozhukov, Matt Taddy
Estimation and Inference on Heterogeneous Treatment Effects in High-Dimensional Dynamic Panels under Weak Dependence
arXiv preprint arXiv:1712.09988 [stat.ML], 2017
arXivMichael Zimmert
Efficient Difference-in-Differences Estimation with High-Dimensional Common Trend Confounding
arXiv preprint arXiv:1809.01643 [econ.EM], 2018
arXiv
Debiased sparsity-based inference / theoretical foundations
A. Belloni, V. Chernozhukov, C. Hansen
Inference for High-Dimensional Sparse Econometric Models
In D. Acemoglu, M. Arellano, & E. Dekel (Eds.), Advances in Economics and Econometrics: Tenth World Congress, 245-295, 2013
URL arXivAlexandre Belloni, Victor Chernozhukov, Lie Wang
Pivotal estimation via square-root Lasso in nonparametric regression
The Annals of Statistics, 42(2), 757-788, 2014
URLVictor Chernozhukov, Christian Hansen, Martin Spindler
Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach Annual Review of Economics 7(1), 649-688, 2015
URLAdel Javanmard, Andrea Montanari
Hypothesis Testing in High-Dimensional Regression Under the Gaussian Random Design Model: Asymptotic Theory
IEEE Transactions on Information Theory, 60(10):6522–6554, 2014
URL arXivJerzy Neyman
Optimal asymptotic tests of composite hypotheses
In Ulf Grenander (Eds.), Probability and Statistics, Almqvist & Wiksell, 213–234, 1959
Sara van de Geer, Peter Bühlmann, Ya’acov Ritov, Ruben Dezeure
On asymptotically optimal confidence regions and tests for high-dimensional models
The Annals of Statistics, 42(3), 1166-1202, 2014
URLC.-H. Zhang, S.S. Zhang
Confidence intervals for low dimensional parameters in high dimensional linear models
Journal of the Royal Statistical Society: Series B, 76, 217-242, 2014
URL