1.2. doubleml.data.DoubleMLClusterData#
- class doubleml.data.DoubleMLClusterData(data, y_col, d_cols, cluster_cols, x_cols=None, z_cols=None, t_col=None, s_col=None, use_other_treat_as_covariate=True, force_all_x_finite=True)#
Double machine learning data-backend for data with cluster variables.
DoubleMLClusterDataobjects can be initialized frompandas.DataFrame’s as well asnumpy.ndarray’s.- Parameters:
data (
pandas.DataFrame) – The data.y_col (str) – The outcome variable.
x_cols (None, str or list) – The covariates. If
None, all variables (columns ofdata) which are neither specified as outcome variabley_col, nor treatment variablesd_cols, nor instrumental variablesz_colsare used as covariates. Default isNone.z_cols (None, str or list) – The instrumental variable(s). Default is
None.t_col (None or str) – The time variable (only relevant/used for DiD Estimators). Default is
None.s_col (None or str) – The score or selection variable (only relevant/used for RDD and SSM Estimatiors). Default is
None.use_other_treat_as_covariate (bool) – Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default is
True.force_all_x_finite (bool or str) – Indicates whether to raise an error on infinite values and / or missings in the covariates
x. Possible values are:True(neither missingsnp.nan,pd.NAnor infinite valuesnp.infare allowed),False(missings and infinite values are allowed),'allow-nan'(only missings are allowed). Note that the choiceFalseand'allow-nan'are only reasonable if the machine learning methods used for the nuisance functions are capable to provide valid predictions with missings and / or infinite values in the covariatesx. Default isTrue.
Examples
>>> from doubleml import DoubleMLClusterData >>> from doubleml.datasets import make_pliv_multiway_cluster_CKMS2021 >>> # initialization from pandas.DataFrame >>> df = make_pliv_multiway_cluster_CKMS2021(return_type='DataFrame') >>> obj_dml_data_from_df = DoubleMLClusterData(df, 'Y', 'D', ['cluster_var_i', 'cluster_var_j'], z_cols='Z') >>> # initialization from np.ndarray >>> (x, y, d, cluster_vars, z) = make_pliv_multiway_cluster_CKMS2021(return_type='array') >>> obj_dml_data_from_array = DoubleMLClusterData.from_arrays(x, y, d, cluster_vars, z)
Methods
from_arrays(x, y, d, cluster_vars[, z, t, ...])Initialize
DoubleMLClusterDatafromnumpy.ndarray's.set_x_d(treatment_var)Function that assigns the role for the treatment variables in the multiple-treatment case.
Attributes
all_variablesAll variables available in the dataset.
binary_outcomeLogical indicating whether the outcome variable is binary with values 0 and 1.
binary_treatsSeries with logical(s) indicating whether the treatment variable(s) are binary with values 0 and 1.
cluster_colsThe cluster variable(s).
cluster_varsArray of cluster variable(s).
dArray of treatment variable; Dynamic! Depends on the currently set treatment variable; To get an array of all treatment variables (independent of the currently set treatment variable) call
obj.data[obj.d_cols].values.d_colsThe treatment variable(s).
dataThe data.
force_all_d_finiteIndicates whether to raise an error on infinite values and / or missings in the treatment variables
d.force_all_x_finiteIndicates whether to raise an error on infinite values and / or missings in the covariates
x.n_cluster_varsThe number of cluster variables.
n_coefsThe number of coefficients to be estimated.
n_instrThe number of instruments.
n_obsThe number of observations.
n_treatThe number of treatment variables.
sArray of score or selection variable.
s_colThe score or selection variable.
tArray of time variable.
t_colThe time variable.
use_other_treat_as_covariateIndicates whether in the multiple-treatment case the other treatment variables should be added as covariates.
xArray of covariates; Dynamic! May depend on the currently set treatment variable; To get an array of all covariates (independent of the currently set treatment variable) call
obj.data[obj.x_cols].values.x_colsThe covariates.
yArray of outcome variable.
y_colThe outcome variable.
zArray of instrumental variables.
z_colsThe instrumental variable(s).
- classmethod DoubleMLClusterData.from_arrays(x, y, d, cluster_vars, z=None, t=None, s=None, use_other_treat_as_covariate=True, force_all_x_finite=True)#
Initialize
DoubleMLClusterDatafromnumpy.ndarray’s.- Parameters:
x (
numpy.ndarray) – Array of covariates.y (
numpy.ndarray) – Array of the outcome variable.d (
numpy.ndarray) – Array of treatment variables.cluster_vars (
numpy.ndarray) – Array of cluster variables.z (None or
numpy.ndarray) – Array of instrumental variables. Default isNone.t (
numpy.ndarray) – Array of the time variable (only relevant/used for DiD models). Default isNone.s (
numpy.ndarray) – Array of the score or selection variable (only relevant/used for RDD or SSM models). Default isNone.use_other_treat_as_covariate (bool) – Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default is
True.force_all_x_finite (bool or str) – Indicates whether to raise an error on infinite values and / or missings in the covariates
x. Possible values are:True(neither missingsnp.nan,pd.NAnor infinite valuesnp.infare allowed),False(missings and infinite values are allowed),'allow-nan'(only missings are allowed). Note that the choiceFalseand'allow-nan'are only reasonable if the machine learning methods used for the nuisance functions are capable to provide valid predictions with missings and / or infinite values in the covariatesx. Default isTrue.
Examples
>>> from doubleml import DoubleMLClusterData >>> from doubleml.datasets import make_pliv_multiway_cluster_CKMS2021 >>> (x, y, d, cluster_vars, z) = make_pliv_multiway_cluster_CKMS2021(return_type='array') >>> obj_dml_data_from_array = DoubleMLClusterData.from_arrays(x, y, d, cluster_vars, z)