Double machine learning for interactive IV regression models
Source:R/double_ml_iivm.R
DoubleMLIIVM.Rd
Double machine learning for interactive IV regression models.
Format
R6::R6Class object inheriting from DoubleML.
Details
Interactive IV regression (IIVM) models take the form
\(Y = \ell_0(D,X) + \zeta\),
\(Z = m_0(X) + V\),
with \(E[\zeta|X,Z]=0\) and \(E[V|X] = 0\). \(Y\) is the outcome variable, \(D \in \{0,1\}\) is the binary treatment variable and \(Z \in \{0,1\}\) is a binary instrumental variable. Consider the functions \(g_0\), \(r_0\) and \(m_0\), where \(g_0\) maps the support of \((Z,X)\) to \(R\) and \(r_0\) and \(m_0\), respectively, map the support of \((Z,X)\) and \(X\) to \((\epsilon, 1-\epsilon)\) for some \(\epsilon \in (1, 1/2)\), such that
\(Y = g_0(Z,X) + \nu,\)
\(D = r_0(Z,X) + U,\)
\(Z = m_0(X) + V,\)
with \(E[\nu|Z,X]=0\), \(E[U|Z,X]=0\) and \(E[V|X]=0\). The target parameter of interest in this model is the local average treatment effect (LATE),
\(\theta_0 = \frac{E[g_0(1,X)] - E[g_0(0,X)]}{E[r_0(1,X)] - E[r_0(0,X)]}.\)
See also
Other DoubleML:
DoubleML
,
DoubleMLIRM
,
DoubleMLPLIV
,
DoubleMLPLR
Super class
DoubleML::DoubleML
-> DoubleMLIIVM
Active bindings
subgroups
(named
list(2)
)
Namedlist(2)
with options to adapt to cases with and without the subgroups of always-takers and never-takes. The entryalways_takers
(logical(1)
) speficies whether there are always takers in the sample. The entrynever_takers
(logical(1)
) speficies whether there are never takers in the sample.trimming_rule
(
character(1)
)
Acharacter(1)
specifying the trimming approach.trimming_threshold
(
numeric(1)
)
The threshold used for timming.
Methods
Inherited methods
DoubleML::DoubleML$bootstrap()
DoubleML::DoubleML$confint()
DoubleML::DoubleML$fit()
DoubleML::DoubleML$get_params()
DoubleML::DoubleML$learner_names()
DoubleML::DoubleML$p_adjust()
DoubleML::DoubleML$params_names()
DoubleML::DoubleML$print()
DoubleML::DoubleML$set_ml_nuisance_params()
DoubleML::DoubleML$set_sample_splitting()
DoubleML::DoubleML$split_samples()
DoubleML::DoubleML$summary()
DoubleML::DoubleML$tune()
Method new()
Creates a new instance of this R6 class.
Usage
DoubleMLIIVM$new(
data,
ml_g,
ml_m,
ml_r,
n_folds = 5,
n_rep = 1,
score = "LATE",
subgroups = list(always_takers = TRUE, never_takers = TRUE),
dml_procedure = "dml2",
trimming_rule = "truncate",
trimming_threshold = 1e-12,
draw_sample_splitting = TRUE,
apply_cross_fitting = TRUE
)
Arguments
data
(
DoubleMLData
)
TheDoubleMLData
object providing the data and specifying the variables of the causal model.ml_g
(
LearnerRegr
,LearnerClassif
,Learner
,character(1)
)
A learner of the classLearnerRegr
, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. For binary treatment outcomes, an object of the classLearnerClassif
can be passed, for examplelrn("classif.cv_glmnet", s = "lambda.min")
. Alternatively, aLearner
object with public fieldtask_type = "regr"
ortask_type = "classif"
can be passed, respectively, for example of classGraphLearner
.ml_g
refers to the nuisance function \(g_0(Z,X) = E[Y|X,Z]\).ml_m
(
LearnerClassif
,Learner
,character(1)
)
A learner of the classLearnerClassif
, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. Alternatively, aLearner
object with public fieldtask_type = "classif"
can be passed, for example of classGraphLearner
. The learner can possibly be passed with specified parameters, for examplelrn("classif.cv_glmnet", s = "lambda.min")
.ml_m
refers to the nuisance function \(m_0(X) = E[Z|X]\).ml_r
(
LearnerClassif
,Learner
,character(1)
)
A learner of the classLearnerClassif
, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. Alternatively, aLearner
object with public fieldtask_type = "classif"
can be passed, for example of classGraphLearner
. The learner can possibly be passed with specified parameters, for examplelrn("classif.cv_glmnet", s = "lambda.min")
.ml_r
refers to the nuisance function \(r_0(Z,X) = E[D|X,Z]\).n_folds
(
integer(1)
)
Number of folds. Default is5
.n_rep
(
integer(1)
)
Number of repetitions for the sample splitting. Default is1
.score
(
character(1)
,function()
)
Acharacter(1)
("LATE"
is the only choice) specifying the score function. If afunction()
is provided, it must be of the formfunction(y, z, d, g0_hat, g1_hat, m_hat, r0_hat, r1_hat, smpls)
and the returned output must be a namedlist()
with elementspsi_a
andpsi_b
. Default is"LATE"
.subgroups
(named
list(2)
)
Namedlist(2)
with options to adapt to cases with and without the subgroups of always-takers and never-takes. The entryalways_takers
(logical(1)
) speficies whether there are always takers in the sample. The entrynever_takers
(logical(1)
) speficies whether there are never takers in the sample. Default islist(always_takers = TRUE, never_takers = TRUE)
.dml_procedure
(
character(1)
)
Acharacter(1)
("dml1"
or"dml2"
) specifying the double machine learning algorithm. Default is"dml2"
.trimming_rule
(
character(1)
)
Acharacter(1)
("truncate"
is the only choice) specifying the trimming approach. Default is"truncate"
.trimming_threshold
(
numeric(1)
)
The threshold used for timming. Default is1e-12
.draw_sample_splitting
(
logical(1)
)
Indicates whether the sample splitting should be drawn during initialization of the object. Default isTRUE
.apply_cross_fitting
(
logical(1)
)
Indicates whether cross-fitting should be applied. Default isTRUE
.
Examples
# \donttest{
library(DoubleML)
library(mlr3)
library(mlr3learners)
library(data.table)
set.seed(2)
ml_g = lrn("regr.ranger",
num.trees = 100, mtry = 20,
min.node.size = 2, max.depth = 5)
ml_m = lrn("classif.ranger",
num.trees = 100, mtry = 20,
min.node.size = 2, max.depth = 5)
ml_r = ml_m$clone()
obj_dml_data = make_iivm_data(
theta = 0.5, n_obs = 1000,
alpha_x = 1, dim_x = 20)
dml_iivm_obj = DoubleMLIIVM$new(obj_dml_data, ml_g, ml_m, ml_r)
dml_iivm_obj$fit()
dml_iivm_obj$summary()
#> Estimates and significance testing of the effect of target variables
#> Estimate. Std. Error t value Pr(>|t|)
#> d 0.5418 0.2149 2.522 0.0117 *
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#>
# }
if (FALSE) {
library(DoubleML)
library(mlr3)
library(mlr3learners)
library(mlr3tuning)
library(data.table)
set.seed(2)
ml_g = lrn("regr.rpart")
ml_m = lrn("classif.rpart")
ml_r = ml_m$clone()
obj_dml_data = make_iivm_data(
theta = 0.5, n_obs = 1000,
alpha_x = 1, dim_x = 20)
dml_iivm_obj = DoubleMLIIVM$new(obj_dml_data, ml_g, ml_m, ml_r)
param_grid = list(
"ml_g" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))),
"ml_m" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))),
"ml_r" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))))
# minimum requirements for tune_settings
tune_settings = list(
terminator = mlr3tuning::trm("evals", n_evals = 5),
algorithm = mlr3tuning::tnr("grid_search", resolution = 5))
dml_iivm_obj$tune(param_set = param_grid, tune_settings = tune_settings)
dml_iivm_obj$fit()
dml_iivm_obj$summary()
}