
Generates data from a interactive IV regression (IIVM) model.
Source:R/datasets.R
make_iivm_data.RdGenerates data from a interactive IV regression (IIVM) model. The data generating process is defined as
\(d_i = 1\left\lbrace \alpha_x Z + v_i > 0 \right\rbrace,\)
\(y_i = \theta d_i + x_i' \beta + u_i,\)
\(Z \sim \textstyle{Bernoulli} (0.5)\) and
\(\left(\begin{array}{c} u_i \\ v_i \end{array} \right) \sim \mathcal{N}\left(0, \left(\begin{array}{cc} 1 & 0.3 \\ 0.3 & 1 \end{array} \right) \right).\)
The covariates :\(x_i \sim \mathcal{N}(0, \Sigma)\), where \(\Sigma\)
is a matrix with entries
\(\Sigma_{kj} = 0.5^{|j-k|}\) and \(\beta\) is a dim_x-vector with
entries \(\beta_j=\frac{1}{j^2}\).
The data generating process is inspired by a process used in the simulation experiment of Farbmacher, Gruber and Klaaßen (2020).
Usage
make_iivm_data(
n_obs = 500,
dim_x = 20,
theta = 1,
alpha_x = 0.2,
return_type = "DoubleMLData"
)Arguments
- n_obs
(
integer(1))
The number of observations to simulate.- dim_x
(
integer(1))
The number of covariates.- theta
(
numeric(1))
The value of the causal parameter.- alpha_x
(
numeric(1))
The value of the parameter \(\alpha_x\).- return_type
(
character(1))
If"DoubleMLData", returns aDoubleMLDataobject. If"data.frame"returns adata.frame(). If"data.table"returns adata.table(). If"matrix"a namedlist()with entriesX,y,dandzis returned. Every entry in the list is amatrix()object. Default is"DoubleMLData".
References
Farbmacher, H., Guber, R. and Klaaßen, S. (2020). Instrument Validity Tests with Causal Forests. MEA Discussion Paper No. 13-2020. Available at SSRN:doi:10.2139/ssrn.3619201 .