The simulations are based on the the make_pliv_CHS2015-DGP with \(500\) observations. Due to the linearity of the DGP, Lasso is a nearly optimal choice for the nuisance estimation.
NoteMetadata
DoubleML Version 0.11.dev0
Script PLIVLATECoverageSimulation
Date 2025-09-08 12:11
Total Runtime (minutes) 332.748483
Python Version 3.12.3
Config File scripts/plm/pliv_late_config.yml
Partialling out
Loading ITables v2.5.2 from the init_notebook_mode cell...
(need help?)
Loading ITables v2.5.2 from the init_notebook_mode cell...
(need help?)
IV-type
For the IV-type score, the learners ml_l and ml_g are both set to the same type of learner (here Learner g).
Loading ITables v2.5.2 from the init_notebook_mode cell...
(need help?)
Loading ITables v2.5.2 from the init_notebook_mode cell...
(need help?)