Double machine learning data-backend for data with cluster variables
Source:R/double_ml_data.R
DoubleMLClusterData.Rd
Double machine learning data-backend for data with cluster variables.
DoubleMLClusterData
objects can be initialized from a
data.table. Alternatively DoubleML
provides
functions to initialize from a collection of matrix
objects or
a data.frame
. The following functions can be used to create a new
instance of DoubleMLClusterData
.
DoubleMLClusterData$new()
for initialization from adata.table
.double_ml_data_from_matrix()
for initialization frommatrix
objects,double_ml_data_from_data_frame()
for initialization from adata.frame
.
Super class
DoubleML::DoubleMLData
-> DoubleMLClusterData
Active bindings
cluster_cols
(
character()
)
The cluster variable(s).x_cols
(
NULL
,character()
)
The covariates. IfNULL
, all variables (columns ofdata
) which are neither specified as outcome variabley_col
, nor as treatment variablesd_cols
, nor as instrumental variablesz_cols
, nor as cluster variablescluster_cols
are used as covariates. Default isNULL
.n_cluster_vars
(
integer(1)
)
The number of cluster variables.
Methods
Method new()
Creates a new instance of this R6 class.
Usage
DoubleMLClusterData$new(
data = NULL,
x_cols = NULL,
y_col = NULL,
d_cols = NULL,
cluster_cols = NULL,
z_cols = NULL,
use_other_treat_as_covariate = TRUE
)
Arguments
data
(
data.table
,data.frame()
)
Data object.x_cols
(
NULL
,character()
)
The covariates. IfNULL
, all variables (columns ofdata
) which are neither specified as outcome variabley_col
, nor as treatment variablesd_cols
, nor as instrumental variablesz_cols
are used as covariates. Default isNULL
.y_col
(
character(1)
)
The outcome variable.d_cols
(
character()
)
The treatment variable(s).cluster_cols
(
character()
)
The cluster variable(s).z_cols
(
NULL
,character()
)
The instrumental variables. Default isNULL
.use_other_treat_as_covariate
(
logical(1)
)
Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default isTRUE
.
Method set_data_model()
Setter function for data_model
. The function implements the causal model
as specified by the user via y_col
, d_cols
, x_cols
, z_cols
and
cluster_cols
and assigns the role for the treatment variables in the
multiple-treatment case.
Arguments
treatment_var
(
character()
)
Active treatment variable that will be set totreat_col
.
Examples
library(DoubleML)
dt = make_pliv_multiway_cluster_CKMS2021(return_type = "data.table")
obj_dml_data = DoubleMLClusterData$new(dt,
y_col = "Y",
d_cols = "D",
z_cols = "Z",
cluster_cols = c("cluster_var_i", "cluster_var_j"))