
Generates data from a partially linear regression model used in Chernozhukov et al. (2018)
Source:R/datasets.R
make_plr_CCDDHNR2018.RdGenerates data from a partially linear regression model used in Chernozhukov et al. (2018) for Figure 1. The data generating process is defined as
\(d_i = m_0(x_i) + s_1 v_i,\)
\(y_i = \alpha d_i + g_0(x_i) + s_2 \zeta_i,\)
with \(v_i \sim \mathcal{N}(0,1)\) and \(\zeta_i \sim \mathcal{N}(0,1),\). The covariates are distributed as \(x_i \sim \mathcal{N}(0, \Sigma)\), where \(\Sigma\) is a matrix with entries \(\Sigma_{kj} = 0.7^{|j-k|}\). The nuisance functions are given by
\(m_0(x_i) = a_0 x_{i,1} + a_1 \frac{\exp(x_{i,3})}{1+\exp(x_{i,3})},\)
\(g_0(x_i) = b_0 \frac{\exp(x_{i,1})}{1+\exp(x_{i,1})} + b_1 x_{i,3},\)
with \(a_0=1\), \(a_1=0.25\), \(s_1=1\), \(b_0=1\), \(b_1=0.25\), \(s_2=1\).
Arguments
- n_obs
(
integer(1))
The number of observations to simulate.- dim_x
(
integer(1))
The number of covariates.- alpha
(
numeric(1))
The value of the causal parameter.- return_type
(
character(1))
If"DoubleMLData", returns aDoubleMLDataobject. If"data.frame"returns adata.frame(). If"data.table"returns adata.table(). If"matrix"a namedlist()with entriesX,yanddis returned. Every entry in the list is amatrix()object. Default is"DoubleMLData".
References
Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2018), Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21: C1-C68. doi:10.1111/ectj.12097 .