Generates data from a interactive regression (IRM) model. The data generating process is defined as
\(d_i = 1\left\lbrace \frac{\exp(c_d x_i' \beta)}{1+\exp(c_d x_i' \beta)} > v_i \right\rbrace,\)
\( y_i = \theta d_i + c_y x_i' \beta d_i + \zeta_i,\)
with \(v_i \sim \mathcal{U}(0,1)\), \(\zeta_i \sim \mathcal{N}(0,1)\)
and covariates \(x_i \sim \mathcal{N}(0, \Sigma)\), where \(\Sigma\)
is a matrix with entries \(\Sigma_{kj} = 0.5^{|j-k|}\).
\(\beta\) is a dim_x-vector with entries \(\beta_j = \frac{1}{j^2}\)
and the constancts \(c_y\) and \(c_d\) are given by
\( c_y = \sqrt{\frac{R_y^2}{(1-R_y^2) \beta' \Sigma \beta}},\)
\(c_d = \sqrt{\frac{(\pi^2 /3) R_d^2}{(1-R_d^2) \beta' \Sigma \beta}}.\)
The data generating process is inspired by a process used in the simulation experiment (see Appendix P) of Belloni et al. (2017).
Usage
make_irm_data(
  n_obs = 500,
  dim_x = 20,
  theta = 0,
  R2_d = 0.5,
  R2_y = 0.5,
  return_type = "DoubleMLData"
)Arguments
- n_obs
 (
integer(1))
The number of observations to simulate.- dim_x
 (
integer(1))
The number of covariates.- theta
 (
numeric(1))
The value of the causal parameter.- R2_d
 (
numeric(1))
The value of the parameter \(R_d^2\).- R2_y
 (
numeric(1))
The value of the parameter \(R_y^2\).- return_type
 (
character(1))
If"DoubleMLData", returns aDoubleMLDataobject. If"data.frame"returns adata.frame(). If"data.table"returns adata.table(). If"matrix"a namedlist()with entriesX,y,dandzis returned. Every entry in the list is amatrix()object. Default is"DoubleMLData".
