doubleml.plm.DoubleMLLPLR ========================= .. currentmodule:: doubleml.plm .. autoclass:: DoubleMLLPLR .. rubric:: Methods .. autosummary:: ~DoubleMLLPLR.bootstrap ~DoubleMLLPLR.confint ~DoubleMLLPLR.construct_framework ~DoubleMLLPLR.draw_sample_splitting ~DoubleMLLPLR.evaluate_learners ~DoubleMLLPLR.fit ~DoubleMLLPLR.get_params ~DoubleMLLPLR.p_adjust ~DoubleMLLPLR.sensitivity_analysis ~DoubleMLLPLR.sensitivity_benchmark ~DoubleMLLPLR.sensitivity_plot ~DoubleMLLPLR.set_ml_nuisance_params ~DoubleMLLPLR.set_sample_splitting ~DoubleMLLPLR.tune .. rubric:: Attributes .. autosummary:: ~DoubleMLLPLR.all_coef ~DoubleMLLPLR.all_se ~DoubleMLLPLR.boot_method ~DoubleMLLPLR.boot_t_stat ~DoubleMLLPLR.coef ~DoubleMLLPLR.framework ~DoubleMLLPLR.learner ~DoubleMLLPLR.learner_names ~DoubleMLLPLR.models ~DoubleMLLPLR.n_folds ~DoubleMLLPLR.n_obs ~DoubleMLLPLR.n_rep ~DoubleMLLPLR.n_rep_boot ~DoubleMLLPLR.nuisance_loss ~DoubleMLLPLR.nuisance_targets ~DoubleMLLPLR.params ~DoubleMLLPLR.params_names ~DoubleMLLPLR.predictions ~DoubleMLLPLR.psi ~DoubleMLLPLR.psi_deriv ~DoubleMLLPLR.psi_elements ~DoubleMLLPLR.pval ~DoubleMLLPLR.score ~DoubleMLLPLR.se ~DoubleMLLPLR.sensitivity_elements ~DoubleMLLPLR.sensitivity_params ~DoubleMLLPLR.sensitivity_summary ~DoubleMLLPLR.smpls ~DoubleMLLPLR.smpls_cluster ~DoubleMLLPLR.smpls_inner ~DoubleMLLPLR.summary ~DoubleMLLPLR.t_stat .. automethod:: DoubleMLLPLR.bootstrap .. automethod:: DoubleMLLPLR.confint .. automethod:: DoubleMLLPLR.construct_framework .. automethod:: DoubleMLLPLR.draw_sample_splitting .. automethod:: DoubleMLLPLR.evaluate_learners .. automethod:: DoubleMLLPLR.fit .. automethod:: DoubleMLLPLR.get_params .. automethod:: DoubleMLLPLR.p_adjust .. automethod:: DoubleMLLPLR.sensitivity_analysis .. automethod:: DoubleMLLPLR.sensitivity_benchmark .. automethod:: DoubleMLLPLR.sensitivity_plot .. automethod:: DoubleMLLPLR.set_ml_nuisance_params .. automethod:: DoubleMLLPLR.set_sample_splitting .. automethod:: DoubleMLLPLR.tune